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Abstract

We have witnessed rapid progress on 3D-aware image

synthesis, leveraging recent advances in generative visual

models and neural rendering. Existing approaches how-

ever fall short in two ways: first, they may lack an under-

lying 3D representation or rely on view-inconsistent ren-

dering, hence synthesizing images that are not multi-view

consistent; second, they often depend upon representation

network architectures that are not expressive enough, and

their results thus lack in image quality. We propose a novel

generative model, named Periodic Implicit Generative Ad-

versarial Networks (π-GAN or pi-GAN), for high-quality

3D-aware image synthesis. π-GAN leverages neural repre-

sentations with periodic activation functions and volumetric

rendering to represent scenes as view-consistent radiance

fields. The proposed approach obtains state-of-the-art re-

sults for 3D-aware image synthesis with multiple real and

synthetic datasets.

1. Introduction

Generative Adversarial Networks (GANs) are capable of

generating high-resolution, photorealistic images [25, 26,

27]. However, these GANs are often confined to two di-

mensions because of a lack of photorealistic 3D training

data; therefore, they cannot support tasks such as synthe-

sizing multiple views of a single object. 3D-aware image

synthesis offers to learn neural scene representations unsu-

pervised from 2D images. The learned representations can

be used to render view-consistent images from new camera

poses [44, 57, 19].

Current solutions have achieved impressive results in de-

coupling identity from structure, allowing for the render-

ing of a single instance from multiple poses. Nevertheless,

these approaches either lack multi-view consistency or fine

detail. Voxel-based approaches [19] generate interpretable,
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Figure 1: Selected examples synthesized by π-GAN with

CelebA [35] and Cats [70] datasets.

true 3D representations, but are limited by computational

complexity to low resolutions and coarse detail. Convolu-

tional approaches with deep-voxel representations [44, 45]

take advantage of recent progress in convolutional GANs

and can create finely detailed images. However, because

of their reliance on learned black-box rendering, these ap-

proaches fail to guarantee multi-view consistency and can-

not easily generalize beyond the training distribution of

camera poses at inference. Recent approaches that lever-

age neural implicit representations [57] incorporate repre-

sentations based on neural network–parameterized radiance

fields that ensure multi-view consistency and explicit cam-

era control. Nonetheless, the implicit representations used

by these approaches have so far been unable to effectively

express fine details, leading to compromised image quality.

We propose Periodic Implicit Generative Adversar-
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ial Networks (π-GAN), a generative adversarial approach

to unsupervised 3D representation learning from images.

Given input noise, π-GAN conditions an implicit radi-

ance field represented by a SIREN network [59], a fully-

connected network with periodic activation functions. The

conditioned radiance field maps a 3D location and 2D

viewing direction to a view-dependent radiance and view-

independent volume density [23, 38]. Using a differentiable

volume rendering approach that relies on classical volume

rendering techniques, we can render the radiance field from

arbitrary camera poses [42].

π-GAN improves upon the image quality and view-

consistency of previous approaches to 3D-aware image syn-

thesis, as shown in Figure 1. The proposed method utilizes a

SIREN-based neural radiance field representation to encour-

age multi-view consistency, allowing rendering from a wide

range of camera poses and providing an interpretable 3D

structure. The SIREN implicit scene representation, which

makes use of periodic activation functions, is more capa-

ble than ReLU implicit representations at representing fine

details and enables π-GAN to render sharper images than

previous works.

Beyond introducing π-GAN, we make two additional

technical contributions. First, we observe that while ex-

isting work has conditioned ReLU-based radiance fields

through concatenation of the input noise to one or more

layers, conditioning-by-concatenation is sub-optimal for

implicit neural representations with period activations

(SIRENs). We instead propose to use a mapping network

to condition layers in the SIREN through feature-wise lin-

ear modulation (FiLM) [51, 9]. This contribution can

more generally be applied to SIREN architectures beyond

GANs. Second, we introduce a progressive growing strat-

egy, inspired by previous successes in 2D convolutional

GANs [25], to accelerate training and offset the increased

computational complexity of 3D GANs.

We obtain state-of-the-art 3D-aware image synthesis re-

sults on real-world and synthetic datasets, demonstrate that

our method generalizes to new viewpoints, and has appli-

cations to novel view synthesis. Moreover, the 5D spatio-

angular radiance field representation used by π-GAN allows

for an interpretable 3D proxy shape to be extracted via the

marching cubes algorithm [36]. While these proxy shapes

may not be as high quality as those estimated by single-view

shape reconstruction methods tailored to this task [68], they

often end up resulting in a fair approximation, all without

explicit supervision.

Our contributions in this paper include the following:

• We introduce SIREN-based implicit GANs as a viable

alternative to convolution GAN architectures.

• We propose a mapping network with FiLM condition-

ing and a progressive growing discriminator as key

components to achieve high quality results with our

novel SIREN-based implicit GAN.

• We demonstrate view consistency and explicit camera

control as advantages of approaches that rely on an un-

derlying neural radiance field representation and clas-

sical rendering.

• We achieve state-of-the-art results on 3D-aware im-

age synthesis from unsupervised 2D data on the

CelebA [35], Cats [70], and CARLA [8, 57] datasets.

2. Related Work

Neural representations and rendering. Emerging neu-

ral implicit scene representations promise 3D-structure-

aware, continuous, memory-efficient representations for

parts [13, 12], objects [49, 41, 1, 16, 69, 7, 5], or scenes [10,

60, 21, 50, 59]. These can be supervised with 3D data, such

as point clouds, and optimized as either signed distance

functions [49, 41, 1, 16, 60, 21, 50, 58, 28] or occupancy

networks [40, 6]. Using neural rendering [63], implicit neu-

ral representations can also be trained using multiview 2D

images [54, 60, 48, 47, 42, 69, 32, 22, 34]. Temporally

aware extensions [46] and multimodal variants with part-

level semantic segmentation [29] have also been proposed.

Among these approaches, sinusoidal representation net-

works (SIREN) [59] and neural radiance fields (NeRF) [42]

are most closely related to our work. Specifically, we use

SIREN as the representation network architecture of our

framework combined with a neural rendering technique in-

spired by NeRF. Both SIREN and NeRF, however, have only

been explored in the context of overfitting to individual ob-

jects or scenes, whereas we study the combination of as-

pects of these seminal works for applications in 3D GANs.

Exploring the unique challenges of training a neural implicit

GAN supervised by natural 2D data is one of the core con-

tributions of our work.

Generative 3D-aware image synthesis. Generative Ad-

versarial Nets (GANs) [15], or more generally the paradigm

of adversarial learning, have led to significant progress

in various image synthesis tasks, including image genera-

tion [52, 25, 26, 27], image-to-image translation [71], in-

teractive image editing [66], and learning from partial and

noisy observations [3]. These methods operate on the 2D

space of pixels, ignoring the 3D nature of our physical

world. This has limited the application of these generative

models in tasks such as view synthesis.

Visual Object Networks [72] and PrGANs [11] learn to

synthesize 2D images by first generating a voxelized 3D

shape using a 3D-GAN [67] and then projecting it into 2D.

HoloGAN [44] and BlockGAN [45] have extended the sys-

tem by incorporating a volumetric but implicit 3D repre-

sentation. While these methods attempt to model the 3D

structure of the object in the synthesized image, the use of
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Figure 2: The π-GAN generator architecture.

an explicit volume representation has constrained their res-

olution [37]. Szabó et al. [61] and Liao et al. [31] instead

proposed to model 3D shapes as meshes and collections of

primitives for image synthesis, respectively. However, these

representations lack the expressiveness needed to synthe-

size high-fidelity pictures.

The work most similar to ours is GRAF [57], which

learns a generative model for implicit radiance fields for

3D-aware image synthesis. Although π-GAN operates in

a similar setting, its network architecture and training strat-

egy differ from GRAF in several ways. First, we use SIREN

rather than a positionally encoded ReLU MLP as a choice of

neural implicit representation. Second, GRAF conditioned

its MLP generator on both a shape noise code and an ap-

pearance noise code by concatenation; in contrast, we lever-

age a StyleGAN-inspired mapping network, which condi-

tions the entire MLP on a single input noise vector through

FiLM conditioning. Third, we utilize a progressive growing

strategy during training. Finally, we did not employ a patch-

based discriminator, as used by GRAF, as SIREN is prone to

local overfitting to the last batch if sufficient coverage of

the space is not maintained. Our experiments demonstrate

that all of our innovations are critical to high-quality image

synthesis results.

Beyond unconditional 3D-aware image generation, there

is an orthogonal line of work on conditional reconstruction

of 3D shape and texture from partial observations. These

reconstructions can later be used for novel view synthesis.

Various 3D representations have been considered for the

task, including voxels [19, 65], meshes [24, 6, 14, 18, 43],

point clouds [62], a depth map [68], and implicit func-

tions [53, 64]. Some of these methods are also grounded

in adversarial training. While these methods focus on 3D

reconstruction, π-GAN aims to learn an unconditional gen-

erative model of radiance fields.

3. Methods

π-GAN is a generative approach to learning radiance

field representations from unlabeled 2D images, with the

goal of synthesizing high-quality view consistent images.

Traditional 2D GANs, such as StyleGAN [26], take in a la-

tent vector z ∼ pz and directly produce a 2D image. Instead

of directly generating a 2D image from the input noise, z,

our generator GθG(z, ξ) produces an implicit radiance field

conditioned on z. This radiance field is rendered using vol-

ume rendering to produce a 2D image from some camera

pose ξ.

At training time, the generated images are directed to a

traditional convolutional discriminator for adversarial train-

ing. At test time, the radiance field can be rendered from

arbitrary camera poses to produce view-consistent images.

3.1. SIREN­Based Implicit Radiance Field

We represent 3D objects implicitly with a neural radi-

ance field, which is parameterized as a multilayer percep-

tron (MLP) that takes as input a 3D coordinate in space

x = (x, y, z) and the viewing direction d. The neural

radiance field outputs both the spatially varying density

σ(x) : R3 → R and the view-dependent color (r, g, b) =
c(x,d) : R5 → R

3. Moreover, we leverage a StyleGAN-

inspired mapping network to condition the SIREN on a noise

vector z through FiLM conditioning [51, 9].

As shown in Figure 2a, we formalize the FiLM-ed SIREN

backbone of our representation as

Φ (x) =φn−1 ◦ φn−2 ◦ . . . ◦ φ0 (x) , (1)

φi (xi) = sin (γi · (Wixi + bi) + βi) , (2)

where φi : R
Mi 7→ R

Ni is the ith layer of an MLP. It con-

sists of an affine transform defined by the weight matrix

Wi ∈ R
Ni×Mi and the biases bi ∈ R

Ni applied on the

input xi ∈ R
Mi , followed by the sine nonlinearity applied

to each component of the resulting vector (Figure 2b). Our

mapping network is a simple ReLU MLP, which takes as

input a noise vector z and outputs the frequencies γi and

phase shifts βi, which condition each layer of the SIREN.

We found this mapping network to be more expressive

than concatenation-based conditioning. It yielded image-

quality improvements, both for conditioning ReLU-based



Figure 3: A visualization of our neural volume rendering

procedure. Given a conditioned radiance field, we cast rays

from the camera origin o, sample density σ and color c val-

ues along each ray, and calculate pixel color C using Eq. 5.

and SIREN-based neural implicit representations. The abla-

tion studies shown in Sec. 4.3 give further insight into these

conditioning methods.

Both density and color of our implicit volume are then

defined as

σ (x) = WσΦ (x) + bσ, (3)

c (x,d) = Wcφc

(

[Φ (x) ,d]
T
)

+ bc, (4)

where Wσ/c and bσ/c are additional weight and bias pa-

rameters.

3.2. Neural Rendering

We render a neural radiance field from arbitrary camera

poses ξ using neural volume rendering. For this purpose, we

employ a pinhole camera model and cast rays from the cam-

era origin o to compute the integrals along each ray through

the volume. At every sample, our generator predicts the vol-

ume density σ and color c. The pixel color C for a camera

ray r(t) = o+td with near and far bounds tn and tf is then

calculated using the volume rendering equation [38]:

C(r) =

∫ tf

tn

T (t)σ (r(t)) c (r(t),d) dt,

where T (t) = exp

(

−

∫ t

tn

σ(r(s))ds

)

.

(5)

Our approach implements a discretized form of this

equation using the stratified and hierarchical sampling ap-

proach introduced by NeRF [42] (see Figure 3).

This neural rendering approach, which is also adopted

by GRAF [57], has several advantages over previous 3D-to-

2D projections. Neural rendering allows for explicit control

over camera pose, focal length, aspect ratio, and other pa-

rameters, while simple projections, such as those used by

HoloGAN [44], are restricted to representing poses in the

training dataset.

3.3. Discriminator

Following ProgressiveGAN [25], we use a convolutional

discriminator DθD with parameters θD that grows progres-

sively. We begin training at low resolutions and high batch

sizes, during which the generator can focus on producing

coarse shapes. As training progresses, we increase the im-

age resolution and add new layers to the discriminator to

handle the higher resolutions and discriminate fine details.

For most experiments, we begin training at 32×32 and dou-

ble the resolution twice during training, up to 128× 128. In

practice, we found this progressive growing strategy to al-

low for larger batch sizes at the beginning of training, which

helped to stabilize and speed training (see Sec. 4.3). Final

results are rendered by sampling 512× 512 pixels.

Unlike ProgressiveGAN [25], our generator architecture

does not grow; instead, we increase the resolution of the

generator by sampling rays more densely from the same im-

plicit representation.

3.4. Training Details

At training time, we randomly sample camera poses ξ

from a distribution pξ. The pose distributions for each

dataset are known a priori and approximated as either Gaus-

sian, for CelebA and Cats, or uniform, for CARLA (see

supplement for details). In our experiments, we constrained

camera positions to the surface of a unit sphere and directed

the camera to point towards the origin. At training time,

pitch and yaw along the sphere were sampled from a dis-

tribution that was tuned according to the dataset. Real im-

ages I are sampled from the training set with distribution

pI . We use the non-saturating GAN loss with R1 regular-

ization [39]:

L(θ, φ) = Ez∼pz,ξ∼pξ
[f(DθD (GθG(z, ξ)))]

+EI∼pD
[f(−DθD (I)) + λ|∇DθD (I)|

2],

where f(u) = − log(1 + exp(−u)).

(6)

We train π-GAN in a generative adversarial framework

in which a generator and discriminator compete in a zero

sum game. Our generator tries to minimize Equation 6,

while the discriminator simultaneously tries to maximize

Equation 6. We use the Adam optimizer with β1 = 0,

β2 = 0.9. We initialize learning rates to 5× 10−5 for

the generator and 4× 10−4 for the discriminator, decayed

over training to 1× 10−5 and 1× 10−4 respectively. Fur-

ther training and implementation details can be found in the

supplemental materials.

4. Experiments and Analysis

In this section, we first evaluate the quality of images

generated by π-GAN. We then demonstrate that it learns 3D

representations that enables synthesizing images at unseen



Figure 4: Qualitative comparison on CelebA, Cats, and CARLA.

poses. We also include ablation studies to justify our use of

sinusoidal activations and mapping network conditioning.

4.1. Evaluating Image Quality

Datasets. We evaluate π-GAN on the real-world

CelebA [35] and Cats [70] datasets, as well as the syn-

thetic CARLA [8, 57] dataset. CelebA contains 200,000

high-resolution face images of 10,000 different celebrities.

We crop the images from the top of the hair to the bottom

of the chin. The Cats dataset contains 6,444 128 × 128
images of cat heads. The CARLA dataset contains 10k

images of 16 car models with random texture and color

properties, rendered with the Carla Driving simulator. We

train and evaluate at 128 × 128 resolution for all datasets

and models. We evaluate all models using a moving

average of parameters.

Baselines. We compare against two previous approaches

to 3D-aware image synthesis: HoloGAN [44] and Genera-

tive Radiance Fields (GRAF) [57]. Baseline models were

obtained as pre-trained checkpoints directly from the au-

thors or trained until convergence using the recommended

hyperparameters.

Qualitative results. Figure 4 compares images generated

by π-GAN, HoloGAN, and GRAF on three datasets.

Qualitatively, HoloGAN achieves good image quality

but suffers from multi-view inconsistency. Although it gen-



Figure 5: Uncurated generated faces, corresponding to the first 30 random seeds.

(a) CelebA @ 128 × 128

FID ↓ KID ↓ IS ↑

HoloGAN 39.7 2.91 1.89

GRAF 41.1 2.29 2.34

π-GAN 14.7 0.39 2.62

(b) Cats @ 128 × 128

FID ↓ KID ↓ IS ↑

HoloGAN 40.4 3.30 2.03

GRAF 28.9 1.43 1.66

π-GAN 16.8 0.92 2.06

(c) CARLA @ 128 × 128

FID ↓ KID ↓ IS ↑

HoloGAN 67.5 3.95 3.52

GRAF 41.7 2.43 3.70

π-GAN 29.2 1.36 4.27

Table 1: FID, KID mean×100, and IS for CelebA, Cats, and CARLA datasets.

erally produces sharp images, identity shift is visible across

rotations, particularly at the edges of the training distribu-

tion. HoloGAN struggled on the synthetic CARLA dataset,

which featured much larger variations in viewpoint than

CelebA or Cats. Previous papers were also unable to ob-

tain consistent HoloGAN baselines on this dataset [57].

GRAF, which allows for explicit camera control, is more

capable than HoloGAN at recovering wide viewing angles.

Because it utilizes a 3D representation, it renders different

views of the same scene with less identity shift than Holo-

GAN. However, GRAF is less capable than HoloGAN at

rendering fine details such as hair and teeth, and generally

produces images that are more cartoon-ish and less lifelike

than HoloGAN.

Our π-GAN combines fine details with the ability to rep-

resent a wide range of camera angles. Compared with Holo-

GAN and GRAF, it better recreates details such as individ-

ual teeth (CelebA) and whiskers (Cats). Because we repre-

sent each instance with a radiance field, π-GAN generates

images that are inherently view consistent, have minimal

identity shift, and that recover a wide range of angles.

Quantitative results. We evaluate image quality using

Frechet Inception Distance (FID) [20], Kernel Inception

Distance (KID) [2], and Inception Score [56]. Tables 1a,

1b, and 1c show a quantitative comparison on CelebA, Cats,

and CARLA, respectively. We show significant improve-

ments in image quality metrics compared with baselines,

particularly on real-world datasets with fine details. Addi-

tional results, including precision-recall plots [55], are pro-

vided in the supplemental material.

Our evaluation was consistently performed across all

models for Table 1. Note that specific experiment param-

eters, such as image crop, may differ from those used by

other authors.

4.2. Generating Approximate 3D Representations

A key advantage of our approach over previous CNN at-

tempts at 3D representation learning is that by generating an

implicit radiance field, our model learns an underlying 3D-

structure-aware representation. This representation allows

for explicit camera control, naturally lends itself to render-

ing poses that were uncommon or unseen at training time,

and is interpretable.

Extrapolation to rare or unseen camera poses. π-GAN

relies on an underlying 3D structural representation and of-

fers explicit camera control. Like previous methods that of-

fer explicit camera control (e.g., [57]), it more readily ren-

ders views and poses outside of the training dataset distri-

bution than previous methods that rely on black-box repre-



Figure 6: π-GAN is capable of rendering views from steep

angles, producing reasonable results even beyond two stan-

dard deviations of camera yaw on CelebA. Face yaw on

CelebA is approximately zero-centered Gaussian, with a

standard deviation of 17o from the centerline.

Figure 7: Explicit camera control at inference enables ren-

dering views completely absent from the training distribu-

tion of camera poses. Although π-GAN was trained only

on close-up images, it extrapolates to zoomed-out poses.

Figure 8: Linearly interpolating between two latent codes.

sentations or projections (e.g., [44]).

Figure 6 shows that the explicit camera control and rep-

resentation naturally generalizes to rendering views even

from steep angles, although visual artifacts are stronger at

the edges of the camera distribution. This is a consequence

of the distribution of CelebA images being imbalanced to-

wards front-facing images. As shown in Figure 4, CARLA,

which features uniformly distributed poses, did not suffer

from this issue.

Figure 7 illustrates that, despite only training on tightly

cropped images, the radiance field extrapolates when we

zoom out the camera. Because the radiance field may be

rendered from any of a wide variety of angles at training

time, the generator is encouraged to produce a radiance field

that represents the entire scene, even if only a small portion

will be visible in any single image.

To demonstrate that the latent space learned by π-GAN

is semantically meaningful, we show the results of interpo-

lating between two latent codes in Figure 8.

Interpreting the 3D representation. Although the color

output of the implicit representation depends on ray direc-

tion to allow for view-dependent effects, such as specular-

ities, the density output σ is completely view independent,

resulting in a view-consistent 3D structure that represents a

proxy shape of the scene. This 3D structure can be extracted

and visualized using the marching cubes algorithm [36] on

Figure 9: We can extract a proxy 3D representation as a

mesh, either by projecting a depth-map (CelebA, Cats), or

through marching cubes (CARLA).

Conditioning
Architecture

ReLU P.E. Sine

Concatenation 32.0 21.6

Mapping Network 26.8 5.15

Table 2: FID scores on CelebA @ 64 × 64, when compar-

ing network architectures with different activation functions

and conditioning methods.

the density output of the conditioned radiance field to pro-

duce a surface mesh. Figure 9 shows 3D models extracted

from the 3D representation.

4.3. Ablations

We ablate sinusoidal activations and mapping network

conditioning to better understand their individual contribu-

tions. We compare radiance fields with sinusoidal activa-

tions against radiance fields with ReLU activations and po-

sitional encodings (P.E.) [42]. Moreover, we evaluate radi-

ance fields conditioned with a mapping network and FiLM

conditioning against radiance fields conditioned via con-

catenation [57]. Table 2 summarizes the results of these

experiments. Ablations were conducted at 64× 64 in order

to save computational resources. Sinusoidal activations and

mapping network conditioning each yielded improvements

against their respective baselines. However, the combined

model, with both sinusoidal activations and a mapping net-

work, was more effective than the sum of its parts.

Figure 10 compares early training steps for a model

trained with progressive growing against a model initialized

to the full 128 × 128 image resolution. Because computa-

tional complexity grows quadratically with image size, pro-



Figure 10: Ablation study for training π-GAN with and

without progressive growing on CelebA @ 128× 128

Input Image Synthesized Views

Figure 11: Using a trained π-GAN generator, we can op-

timize a radiance field to fit an input image and synthesize

novel views from arbitrary camera poses.

gressive growing, which begins at low resolutions, allows

for the use of much larger batch sizes at the start of train-

ing. The large batch sizes are helpful in stabilizing training,

while also allowing for a higher throughput in images per

iteration. As others have found before us [25], progressive

growing, and the larger batch sizes it enables, helped ensure

quality and diversity for generated images.

5. Discussion

Applications to novel view synthesis. Figure 11 demon-

strates that it is possible to use a trained generator, without

modifications, to perform single-view reconstruction using

the procedure described by Karras et al. [27]. For this pur-

pose, we freeze the parameters of our implicit representa-

tion and seek the frequencies γi and phase shifts βi for each

MLP layer i which produce a radiance field that, when ren-

dered, best matches the target image. Additional details are

found in the supplement.

Failure modes, limitations, and future work. While π-

GAN has demonstrated considerable improvements to im-

age quality for 3D-aware image synthesis, there remain a

plethora of avenues for future work.

Figure 12: In a failure case reminiscent of the hollow-face

illusion, our model sometimes generates objects with in-

verted sections.

Although the unsupervised learning of 3D shapes was

not the focus of this work, π-GAN nevertheless produces in-

terpretable and view-consistent 3D representations that cap-

ture the 3D structures of objects. Future work could focus

on refining the quality of extracted meshes, with π-GAN as

a viable solution to learning shapes from unposed images.

In certain cases, π-GAN can generate a radiance field

that creates viable images when rendered from each direc-

tion but nonetheless fails to conform to the 3D shape that we

would expect. As Figure 12 demonstrates, a concave face

is a valid geometric solution, given the constrained range of

poses the discriminator sees at training. Further investiga-

tion may reveal insights that could resolve such ambiguities.

While π-GAN has made strides in improving image

quality for 3D-aware image synthesis, much work remains

before implicit GANs can match the image quality of state-

of-the-art 2D-convolutional GANs [27, 4, 25]. Future work

may produce solutions to remaining visual artifacts and fur-

ther improve image quality. π-GAN is computationally ex-

pensive compared to traditional 2D GANs because the com-

plexity of training the generator scales not only with image

size but also with depth along each ray. More efficient ren-

der techniques could lower the computational barrier and

allow for larger, sharper images.

Ethical considerations. While our inverse rendering re-

sults only reconstruct static images, the method could be

extended to generate fake photos or videos of real people

(DeepFakes). DeepFakes pose a societal threat, and we

do not condone using our work to generate fake images or

videos of any person with the intent of spreading misinfor-

mation or tarnishing their reputation. We also recognize a

lack of diversity in our faces results, stemming from the im-

plicit bias in the CelebA dataset.

Conclusion. Photorealistic 3D-aware image synthesis has

many exciting applications in vision and graphics. With our

work, we take a significant step towards this goal.
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A. Novel View Synthesis Details

We demonstrate a potential application of π-GAN: we

can use a trained generator, without modifications, to per-

form single-view reconstruction. We base our method

on the inverse projection procedure outlined by Karras et

al. [27].

We freeze the parameters of our implicit representation

and seek the frequencies γi and phase shifts βi for each

MLP layer i which produce a radiance field that, when ren-

dered, best matches the target image. We initialize γi and

βi to γ̄i and β̄i, the center of mass of frequencies and phase

shifts for each layer. We calculate γ̄i and β̄i simply by

averaging the frequencies and phase shifts of ten thousand

random noise vector inputs. We then run gradient descent

to minimize the mean-squared-error image reconstruction

loss. We additionally introduce an L2 penalty with a weight

of 0.1 during the optimization process to prevent γi and βi

from straying too far from γ̄i and β̄i. We optimize the fre-

quencies and phase shifts with the Adam optimizer over 700

iterations. We initialize the learning rate to 0.01, decaying

by a factor of 0.5 every 200 iterations.

B. Model Details

Mapping Network. The mapping network is parameter-

ized as an MLP with three hidden layers of 256 units each.

The mapping network uses leaky-ReLU activations with a

negative slope of 0.2.

SIREN-based Implicit Radiance Field. The FiLMed-

SIREN [59] backbone of the generator is parameterized as an

MLP with eight FiLMed-SIREN hidden layers of 256 units

each.

Discriminator. Table 3 shows the architecture of the pro-

gressive discriminator. We begin training at low resolutions

and progressively add discriminator stages while upsam-

pling image size. In order to smooth transitions between up-

samples, we fade in the contributions of new layers over ten-

thousand iterations. We utilized CoordConv layers [33] and

residual connections [17] throughout the discriminator.We

considered using a patch discriminator similar to GRAF, but

found it leads to uneven image quality as SIREN is prone to

local overfitting to the last batch if sufficient coverage of the

space is not maintained.

C. Additional Training Details

We train the majority of our models across two RTX

6000 GPUs or a single RTX 8000 GPU. We begin train-

ing at a resolution of 32 × 32, with an initial batch size of

120. At each upsample, we drop the batch size by a factor of

four to keep the models and generated images in memory.

Figure 13: COLMAP reconstructions for models trained on

CelebA, obtained by running COLMAP with default pa-

rameters and no known camera poses; GRAF’s results were

from their supplement.

Figure 14: Precision-recall plots for π-GAN, GRAF, and

HoloGAN on CelebA, Cats, and CARLA.



Table 3: Discriminator architecture, showing progressive

growing stages.

Activation Output Shape

Input Image

Adapter Block (1×1)

Coord Conv 1 (3×3)

Coord Conv 2 (3×3)

Avg Pool Downsample

-

LeakyReLU (0.2)

LeakyReLU (0.2)

LeakyReLU (0.2)

-

3×128×128

64×128×128

128×128×128

128×128×128

128×64×64

Coord Conv 1 (3×3)

Coord Conv 2 (3×3)

Avg Pool Downsample

LeakyReLU (0.2)

LeakyReLU (0.2)

-

256×64×64

256×64×64

256×32×32

Coord Conv 1 (3×3)

Coord Conv 2 (3×3)

Avg Pool Downsample

LeakyReLU (0.2)

LeakyReLU (0.2)

-

400×32×32

400×32×32

400×16×16

Coord Conv 1 (3×3)

Coord Conv 2 (3x3)

Avg Pool Downsample

LeakyReLU (0.2)

LeakyReLU (0.2)

-

400×16×16

400×16×16

400×8×8

Coord Conv 1 (3×3)

Coord Conv 2 (3×3)

Avg Pool Downsample

LeakyReLU (0.2)

LeakyReLU (0.2)

-

400×4×4

400×4×4

400×2×2

Conv 2d (2×2) 1×1×1

Table 4: FID, KID mean × 100, and IS for π-GAN on

CelebA, Cats, and CARLA datasets.

FID ↓ KID ↓ IS ↑

CelebA @ 64× 64 5.15 0.09 2.28

Cats @ 64× 64 7.36 0.23 2.07

CARLA @ 64× 64 13.59 0.34 3.85

At higher resolutions, we aggregate across mini-batches to

keep an effective batch size at or above 12, given our GPU

constraints. To further reduce memory usage, we used Py-

Torch’s Automatic Mixed Precision (AMP). π-GAN trained

for 10 hours at 32×32, 10 hours at 64×64, and 36 hours at

128×128. Certain rendering and camera parameters were

tuned according to the dataset. We use the true pose dis-

tribution when it is known, e.g. for synthetic datasets, oth-

erwise we make a guess and tune the distribution as a hy-

perparameter. We sample camera poses for CelebA from

a normal distribution, with a vertical standard deviation of

0.15 radians and a horizontal standard deviation of 0.3 radi-

ans. We sample camera poses for Cats from a uniform dis-

tribution, with horizontal range (−0.75, 0.75) and vertical

range (−0.4, 0.4). We sample poses for CARLA uniformly

from the upper hemisphere. We tune the number of samples

along each ray to balance memory consumption and depth

resolution. We use 24 samples per ray for CelebA and Cats

and 64 samples per ray for CARLA. We utilize a pinhole

perspective camera with a field of view of 12o for CelebA,

12o for Cats, and 30o for CARLA.

D. π-GAN results @ 64× 64

Table 4 includes additional quantitative results, evaluated

at 64 × 64, in order to allow for comparisons of π-GAN

against models evaluated at lower resolutions.

E. Additional Visual Results

We include additional visual results to show the image

quality and view consistency of π-GAN. Figures 16 and 17

demonstrate the wide range of camera poses supported by

π-GAN for generated faces and cats. Figure 15 shows the

fine detail that π-GAN renders on larger images. Figure 18

shows additional cars with varying elevation and rotation.

We include several videos of faces and cats with the cam-

era following an elliptical trajectory in our supplementary

video.

F. COLMAP Reconstruction

In order to demonstrate the images from π-GAN are

multi-view consistent, we include a COLMAP reconstruc-

tion in Figure 13. We observe that proxy shapes extracted

from pi-GAN lead to more pleasing novel views when pro-

jected to novel camera poses than those from GRAF.

G. Interpolation and Truncation

Following the method of StyleGAN [26] we can

smoothly interpolate between two generated samples by lin-

early interpolating between the frequencies and phase shifts

corresponding to the two latent codes. We include a result

in Figure 8 in the paper. Along similar lines, it is also pos-

sible to trade off fidelity and diversity at test time following

the method proposed in StyleGAN [26]. Because truncation

reduced the diversity of generated images, we provided all

evaluation metrics without truncation.

H. Precision and Recall

Recent work in generative models have investigated al-

ternative metrics in order to independently evaluate fidelity

and diversity [55, 30]. Figure 14 provides precision-recall

plots on CelebA, Cats, and CARLA, comparing π-GAN to

GRAF and HoloGAN.



Figure 15: Curated examples from our model trained with CelebA [35].



Figure 16: Curated examples from our model trained with CelebA, displayed from multiple viewing angles.

Figure 17: Curated examples from our model trained with Cats [70], displayed from multiple viewing angles.



Figure 18: Curated examples from our model trained with CARLA [8], displayed from multiple viewing angles.


